If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=9.81(t^2)/2
We move all terms to the left:
200-(9.81(t^2)/2)=0
We get rid of parentheses
-9.81t^2/2+200=0
We multiply all the terms by the denominator
-9.81t^2+200*2=0
We add all the numbers together, and all the variables
-9.81t^2+400=0
a = -9.81; b = 0; c = +400;
Δ = b2-4ac
Δ = 02-4·(-9.81)·400
Δ = 15696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15696}=\sqrt{144*109}=\sqrt{144}*\sqrt{109}=12\sqrt{109}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{109}}{2*-9.81}=\frac{0-12\sqrt{109}}{-19.62} =-\frac{12\sqrt{109}}{-19.62} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{109}}{2*-9.81}=\frac{0+12\sqrt{109}}{-19.62} =\frac{12\sqrt{109}}{-19.62} $
| u/2+13=37 | | (6x-15)+(5x+3)=180 | | 35=-4.9t^2+42t | | -4.9t^2+42t=0 | | 117.20x0.0925=10.841 | | 4x=48-16x | | 2y=10-4y | | -5x-2=87 | | r/10=1.5 | | 3.2x-2.4=9.6 | | -4*2^-k=-18 | | 6/2x+8=1/5x+9 | | 103+55=x | | 55+103=x | | x+55=103 | | x+x=99 | | 3x-12=-42 | | X2-10x+22=-2 | | 8(6-u)=136 | | X(2x-225)=180 | | 3x^2+15=63 | | 17x-3=14x-37 | | i/5+9=15 | | -4y+2(y+7)=28 | | 3(-+x)-5x=4+8 | | 4(c-5)=46 | | (10x+17)+(5x)=87 | | 4c-5=45 | | 5c-4=45 | | 5(c-4)=45 | | 17.95+24x=18.95+18x | | 3y+36+2y=8 |